The time-space evolution of such a collision process is illustrated in three time steps of 10 fm/c (3x10-23 s) each, as viewed in the center-of-mass system of the two colliding nuclei: the approach phase, due to relativistic effects, the nuclei are shortened in the direction of motion (left); the high-density formation phase (middle); and the expansion phase (right). It can be seen that nucleon resonances (green) are excited in the high-density phase, before decaying via emission of mesons (red). In the final phase of the collision, all particles fly out in all directions like an explosion (fireball).
As a result of the described collision one obtains about 200 charged
particles (protons and pions) and about 25 photons from the
0 decay. Vector mesons such the
and
meson, produced during the collision,
may decay
within the transient
hot and compressed collision zone formed in such collisions.
Vector mesons can decay into e+e- pairs which leave
the interaction
zone undisturbed, thus allowing a determination of their invariant mass.
A second-generation dilepton spectrometer, called HADES , is currently
under construction at GSI, in order to study in-medium modifications of the
vector mesons
(
,
,
) produced in relativistic heavy-ion
collisions at the SIS accelerator facility of GSI.
( for more details see,
the International Experiment HADES at GSI).